Tag Archives: custom roller chains

China Custom Short Pitch Precision Roller Chains and Bush Chains Customized Chain Sprocket 80b (16B) for Agricultural Machinery by China Manufacturer

Product Description

SPROCKET  1” X 17.02mm  16B SERIES SPROCKETS
 

For Chain Acc.to DIN8187 ISO/R 606
Tooth Radius  r3 26.0mm
Radius Width C 2.5mm
Tooth Width b1 15.8mm
Tooth Width B1 16.2mm
Tooth Width B2 47.7mm
Tooth Width B3 79.6mm
16B SERIES ROLLER CHAINS  
Pitch 25.4 mm
Internal Width 17.02 mm
Roller Diameter 15.88mm

Products Show

 

Z de dp SIMPLEX DUPLEX TRIPLEX
dm D1 A dm D2 A dm D2 A
8 77.0  66.37  42 16 35 42 16 65 42 20 95
9 85.0  74.27  50 16 35 50 16 65 50 20 95
10 93.0  82.19  55 16 35 56 16 65 56 20 95
11 105.1  90.14  61 16 40 64 20 70 64 25 100
12 109.0  98.14  69 16 40 72 20 70 72 25 100
13 117.0  106.12  78 16 40 80 20 70 80 25 100
14 125.0  114.15  84 16 40 88 20 70 88 25 100
15 133.0  122.17  92 16 40 96 20 70 96 25 100
16 141.0  130.20  100 20 45 104 20 70 104 25 100
17 149.0  138.22  100 20 45 112 20 70 112 25 100
18 157.0  146.28  100 20 45 120 20 70 120 25 100
19 165.2  154.33  100 20 45 128 20 70 128 25 100
20 173.2  162.38  100 20 45 130 20 70 130 25 100
21 181.2  170.43  110 20 50 130 25 70 *130 25 100
22 189.3  178.48  110 20 50 *130 25 70 *130 25 100
23 197.5  186.53  110 20 50 *130 25 70 *130 25 100
24 205.5  194.59  110 20 50 *130 25 70 *130 25 100
25 213.5  202.66  110 20 50 *130 25 70 *130 25 100
26 221.6  210.72  120 20 50 *130 25 70 *130 30 100
27 229.6  218.79  120 20 50 *130 25 70 *130 30 100
28 237.7  226.85  120 20 50 *130 25 70 *130 30 100
29 245.8  234.92  120 20 50 *130 25 70 *130 30 100
30 254.0  243.00  120 20 50 *130 25 70 *130 30 100
31 262.0  251.08  *120 25 50 *140 25 70 *140 30 100
32 270.0  259.13  *120 25 50 *140 25 70 *140 30 100
33 278.5  267.21  *120 25 50 *140 25 70 *140 30 100
34 287.0  275.28  *120 25 50 *140 25 70 *140 30 100
35 296.2  283.36  *120 25 50 *140 25 70 *140 30 100
36 304.6  291.44  *120 25 50 *140 25 70 *140 30 100
37 312.6  299.51  *120 25 50 *140 25 70 *140 30 100
38 320.7  307.59  *120 25 50 *140 25 70 *140 30 100
39 328.8  315.67  *120 25 50 *140 25 70 *140 30 100
40 336.9  323.75  *120 25 50 *140 25 70 *140 30 100
41 345.0  331.81  *125 25 68 *140 25 70 *160 30 100
42 353.0  339.89  *125 25 68 *140 25 70 *160 30 100
43 361.1  347.97  *125 25 68 *140 25 70 *160 30 100
44 369.1  356.05  *125 25 68 *140 25 70 *160 30 100
45 377.1  364.12  *125 25 68 *140 25 70 *160 30 100
46 385.2  372.20  *125 25 68 *140 25 70 *160 30 100
47 393.2  380.28  *125 25 68 *140 25 70 *160 30 100
48 401.3  388.36  *125 25 68 *140 25 70 *160 30 100
49 409.3  396.44  *125 25 68 *140 25 70 *160 30 100
50 417.4  404.52  *125 25 68 *140 25 70 *160 30 100
51 425.5  412.60  *125 25 68 *150 25 85 *180 30 110
52 433.6  420.68  *125 25 68 *150 25 85 *180 30 110
53 441.7  428.76  *125 25 68 *150 25 85 *180 30 110
54 448.3  436.84  *125 25 68 *150 25 85 *180 30 110
55 457.9  444.92  *125 25 68 *150 25 85 *180 30 110
56 466.0  453.01  *125 25 68 *150 25 85 *180 30 110
57 474.0  461.08  *125 25 68 *150 25 85 *180 30 110
58 482.1  469.16  *133 25 68 *150 25 85 *180 30 110
59 490.2  477.24  *133 25 68 *150 25 85 *180 30 110
60 498.3  485.23  *133 25 68 *150 25 85 *180 30 110
62 514.5  501.49  *133 25 68 *150 25 85 *180 30 110
64 530.7  517.65  *140 25 68 *160 25 90 *180 30 110
65 538.8  525.73  *140 25 68 *160 25 90 *180 30 110
66 546.8  533.80  *140 25 68 *160 25 90 *180 30 110
68 562.9  549.98  *140 25 68 *160 25 90 *180 30 110
70 579.2  566.15  *140 25 68 *160 25 90 *180 30 110
72 595.4  582.31  *140 25 68 *160 25 90 *180 30 110
75 619.7  606.56  *140 25 68 *160 25 90 *180 30 110
76 627.0  614.64  *140 25 68 *160 25 90 *180 30 110
78 643.3  630.81  *140 25 68 *160 25 90 *180 30 110
80 660.0  646.97  *140 25 68 *160 25 90 *180 30 110
85 699.9  687.39  *140 25 78 *160 25 90 *180 30 110
90 740.3  727.80  *140 25 78 *160 25 90 *180 30 110
95 781.1  768.22  *140 25 78 *160 25 90 *180 30 110
100 821.1  808.64  *140 25 78 *160 25 90 *180 30 110
110 902.0  889.48  *140 25 78 *160 25 90 *180 30 110
114 934.3  921.81  *140 25 78 *160 25 90 *180 30 110
120 982.8  970.32  *140 25 78 *160 25 90 *180 30 110
125 1571.3  1571.73  *140 25 78 *160 25 90 *180 30 110

Notice: *welding hub

BASIC INFO.
 

Product name  DIN ISO Standard Sprocket for Roller Chain
Materials Available  1. Stainless Steel: SS304, SS316, etc
2. Alloy Steel: C45, 45Mn, 42CrMo, 20CrMo, etc
3. OEM according to your request
Surface Treatment Heat treatment, Quenching treatment, High frequency normalizing treatment, Polishing, Electrophoresis paint processing, Anodic oxidation treatment, etc
Characteristic Fire Resistant, Oil Resistant, Heat Resistant, CZPT resistance, Oxidative resistance, Corrosion resistance, etc
Design criterion ISO DIN ANSI & Customer Drawings
Size Customer Drawings & ISO standard 
Application Industrial transmission equipment
Package Wooden Case / Container and pallet, or made-to-order
Certificate ISO9001: 2008 
Advantage Quality first, Service first, Competitive price, Fast delivery
Delivery Time 20 days for samples. 45 days for official order.

INSTALLATION AND USING

The chain wheel, as a drive or deflection for chains, has pockets to hold the chain links with a D-profile cross section with flat side surfaces  parallel to the centre plane of the chain links, and outer surfaces at right angles to the chain link centre plane. The chain links are pressed firmly against the outer surfaces and each of the side surfaces by the angled laying surfaces at the base of the pockets, and also the support surfaces of the wheel body together with the end sides of the webs formed by the leading and trailing walls of the pocket.

NOTICE

When fitting new chain spoket it is very important that a new chain is fitted at the same time, and vice versa. Using an old chain with new sprockets, or a new chain with old sprockets will cause rapid wear.

It is important if you are installing the chainwheels yourself to have the factory service manual specific to your model. Our chainwheels are made to be a direct replacement for your OEM chainwheels and as such, the installation should be performed according to your models service manual.

During use a chain will stretch (i.e. the pins will wear causing extension of the chain). Using a chain which has been stretched more than the above maximum allowance causes the chain to ride up the teeth of the sprocket. This causes damage to the tips of the chainwheels teeth, as the force transmitted by the chain is transmitted entirely through the top of the tooth, rather than the whole tooth. This results in severe wearing of the chainwheel.
 

FOR CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

Q:Why choose us ?
A. we are a manufacturer, we have manufactured Chain and Sprocket for over 20 years .
B. Reliable Quality Assurance System;
C. Cutting-Edge Computer-Controlled CNC Machines;
D. Bespoke Solutions from Highly Experienced Specialists;
E. Customization and OEM Available for Specific Application;
F. Extensive Inventory of Spare Parts and Accessories;
G. Well-Developed CZPT Marketing Network;
H. Efficient After-Sale Service System

Q. what is your payment term? 
 A: 30% TT deposit, 70% balance T/T before shipping.

Q:Can we print our logo on your products?
A: yes, we offer OEM/ODM service, we support the customized logo, size, package,etc.

Q: Can you make chains according to my CAD drawings?
A: Yes. Besides the regular standard chains, we produce non-standard and custom-design products to meet the specific technical requirements. In reality, a sizable portion of our production capacity is assigned to make non-standard products.

 
 Q: what is your main market?
A: North America, South America, Eastern Europe, Western Europe, Southeast Asia, Africa, Oceania, Mid East, Eastern Asia,
 
Q: Can I get samples from your factory?
A: Yes, Samples can be provided.
 
Q: If products have some quality problem, how would you deal with?
A: We will responsible for all the quality problems.
 

 

Shipping Cost:

Estimated freight per unit.



To be negotiated
Standard Or Nonstandard: Nonstandard
Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Motor, Electric Cars, Motorcycle, Machinery
Hardness: Hardened Tooth Surface
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

wheel sprocket

Calculating Torque Requirements for a wheel sprocket Assembly

Calculating the torque requirements for a wheel sprocket assembly involves considering various factors that contribute to the torque load. The torque requirement is crucial for selecting the appropriate motor or power source to drive the system effectively. Here’s a step-by-step guide:

  1. 1. Determine the Load Torque: Identify the torque required to overcome the resistance or load in the system. This includes the torque needed to move the load, overcome friction, and accelerate the load if applicable.
  2. 2. Identify the Sprocket Radius: Measure the radius of the sprocket (distance from the center of the sprocket to the point of contact with the chain or belt).
  3. 3. Calculate the Tension in the Chain or Belt: If using a chain or belt drive, calculate the tension in the chain or belt. Tension affects the torque required for power transmission.
  4. 4. Account for Efficiency Losses: Consider the efficiency of the system. Not all the input power will be converted into output power due to friction and other losses. Account for this efficiency in your calculations.
  5. 5. Use the Torque Equation: The torque (T) can be calculated using the following equation:
    T = (Load Torque × Sprocket Radius) ÷ (Efficiency × Tension)

It’s essential to use consistent units of measurement (e.g., Newton meters or foot-pounds) for all values in the equation.

Remember that real-world conditions may vary, and it’s advisable to add a safety factor to your calculated torque requirements to ensure the system can handle unexpected peak loads or variations in operating conditions.

wheel sprocket

Noise and Vibration in wheel sprocket Configurations

In a wheel sprocket configuration, noise and vibration levels can vary depending on several factors:

  1. Quality of Components: The quality of the wheel sprocket components can significantly impact noise and vibration. Well-manufactured and precisely engineered components tend to produce less noise and vibration.
  2. Lubrication: Proper lubrication of the sprocket teeth and chain or belt can reduce friction, which in turn helps minimize noise and vibration.
  3. Alignment: Correct alignment between the wheel sprocket is crucial. Misalignment can lead to increased noise and vibration as the components may not mesh smoothly.
  4. Tension: Maintaining the appropriate tension in the chain or belt is essential. Insufficient tension can cause the chain to slap against the sprocket teeth, resulting in noise and vibration.
  5. Speed and Load: Higher speeds and heavier loads can lead to increased noise and vibration levels in the system.
  6. Wear and Damage: Worn-out or damaged components can create irregularities in motion, leading to increased noise and vibration.

To reduce noise and vibration in a wheel sprocket setup:

  • Use high-quality components from reputable suppliers.
  • Ensure proper lubrication with appropriate lubricants.
  • Regularly inspect and maintain the system to detect any misalignment, wear, or damage.
  • Follow manufacturer guidelines for chain or belt tensioning.
  • Consider using vibration-damping materials or mounting methods if necessary.

Minimizing noise and vibration not only improves the comfort and safety of the machinery but also extends the life of the components by reducing wear and fatigue.

wheel sprocket

Role of a wheel sprocket in a Mechanical System

In a mechanical system, a wheel sprocket play a crucial role in transferring motion and power from one component to another. They are essential elements of various machines and mechanisms, such as bicycles, conveyor systems, automobiles, and industrial machinery. Let’s explore their functions in more detail:

1. Wheel:

The wheel is a circular component with a central shaft (axle) that allows it to rotate freely around the axle’s axis. Its primary functions include:

  • Motion Transmission: When a force is applied to the wheel’s outer edge, it rotates around the axle, enabling the transfer of linear motion into rotational motion.
  • Load Bearing: The wheel’s structure and material are designed to support and distribute the load placed on it, allowing smooth movement over various surfaces.
  • Reduction of Friction: By using wheels, the friction between the moving object and the ground is significantly reduced, making it easier to move heavy loads with less effort.
  • Directional Control: Wheels can be attached to steering mechanisms to control the direction of movement in vehicles and other equipment.

2. Sprocket:

A sprocket is a toothed wheel designed to mesh with a chain or a belt, facilitating motion transfer between the sprocket and the chain/belt. Its key functions include:

  • Power Transmission: When rotational force (torque) is applied to the sprocket, the teeth engage with the links of the chain or belt, transferring motion and power from one sprocket to another.
  • Speed and Torque Conversion: Different-sized sprockets can be used to adjust the speed and torque of the driven component in a mechanical system.
  • Positive Drive: The teeth on the sprocket and the links on the chain/belt create a positive drive system, reducing the likelihood of slippage or loss of power during operation.
  • Chain/Belt Tensioning: Sprockets help maintain proper tension in the chain or belt, ensuring optimal performance and longevity of the power transmission system.

Together, wheels and sprockets form a vital part of mechanical systems, enabling efficient motion transmission, power transfer, and control in a wide range of applications across various industries.

China Custom Short Pitch Precision Roller Chains and Bush Chains Customized Chain Sprocket 80b (16B) for Agricultural Machinery by China Manufacturer  China Custom Short Pitch Precision Roller Chains and Bush Chains Customized Chain Sprocket 80b (16B) for Agricultural Machinery by China Manufacturer
editor by CX 2023-08-02